
SmartShip Training Session

Ioannis Kontopoulos
Department of Informatics and Telematics, Harokopio University of Athens, Greece

e-mail: kontopoulos@hua.gr

January 2022

1

Contents

1 Introduction 3

2 Requirements for the training session 4
2.1 Run with docker . 4
2.2 Run natively . 4
2.3 Optional requirements . 6

3 AIS Protocol and Dataset 7

4 Managing Ship Trajectories 8
4.1 Preparing the Database . 8
4.2 Loading the data . 8
4.3 Constructing trajectories . 10
4.4 Analyzing trajectories . 11

List of Figures

1 Area under surveillance. 9
2 The linestrings of the trajectories. 10
3 Vessels that travel between two ports. 11
4 The number of two-way trips per vessel between Athens and the island of Salamina. 12

2

1 Introduction

During this training session, participants will get acquainted with a newly developed extension of the PostgreSQL
database, called MobilityDB. MobilityDB is developed on top of the PostGIS extension which adds support for
geographic objects allowing location queries to be run in SQL. MobilityDB is designed to be efficient for queries
related to mobility data e.g., trajectories of moving objects. Furthermore, participants will use MobilityDB to query
maritime tracking data originating from vessels and will get to know the AIS (Automatic Identification System),
the system through which vessels transmit their positions periodically. While this workshop illustrates the usage
of some MobilityDB functions, it does not explain them in detail. If you need help concerning the functions of
MobilityDB, please refer to the documentation or contact the authors of the database [1, 2, 3, 4].

3

https://www.postgresql.org/
https://postgis.net/
https://docs.mobilitydb.com/MobilityDB/master/

2 Requirements for the training session

The installations below are required for someone to run the queries that will be demonstrated in the training session.
Furthermore, MobilityDB requires Linux to be run (other UNIX-like systems may work, but remain untested).
Any distribution of Ubuntu >= 16.04 is a preferred operating system for this session. Participants can either
run MobilityDB with docker (Section 2.1) OR they can install the database themselves (Section 2.2).

2.1 Run with docker

By running MobilityDB with docker, the only installation that is required is the docker engine. To install docker,
simply type in the terminal window the following commands:

Listing 1: Install docker engine

sudo apt update
sudo apt i n s t a l l docker . i o

The Docker service can be setup to run at startup. To do so, type in each command followed by enter:

Listing 2: Start and Automate Docker

sudo sys t emct l s t a r t docker
sudo sys t emct l s t a r t docker

To download a docker container that runs PostgreSQL-12, PostGIS-2.5 and MobilityDB-develop type the fol-
lowing commands:

Listing 3: Pull the prebuilt image of MobilityDB from the Docker Hub Registry

docker p u l l mobi l i tydb / mobi l i tydb :12 - 2 . 5 - deve lop - workshop

Listing 4: Create a Docker volume to preserve the PostgreSQL database files outside of the container

docker volume create mobi l i tydb data

Listing 5: Run the docker container (one command that takes up two lines)

docker run - - name ” mobi l i tydb ” - d - p 5432 - v mobi l i tydb data : / var / l i b / p o s t g r e s q l \
mobi l i tydb / mobi l i tydb :12 - 2 . 5 - deve lop - workshop

Listing 6: Enter into the Docker container

docker exec - i t mobi l i tydb bash

Listing 7: Connect to the database (username = docker , database = mobilitydb)

psq l -U docker - d mobi l i tydb

2.2 Run natively

To install MobilityDB, PostgreSQL and PostGIS== 2.5 need to be installed first. To install PostgreSQL 11, it is
recommended to update the system packages:

Listing 8: Update system packages

sudo apt update && sudo apt - y upgrade
sudo reboot

Before adding repository content to Ubuntu 20.04/18.04/16.04, we need to import the repository signing key:

4

https://hub.docker.com/r/mobilitydb/mobilitydb

Listing 9: Add PostgreSQL 11 APT repository (1)

wget - - qu i e t -O - https : //www. p o s t g r e s q l . org /media/ keys /ACCC4CF8. asc \
| sudo apt -key add -

After importing GPG key, add repository contents to Ubuntu 20.04/18.04/16.04:

Listing 10: Add PostgreSQL 11 APT repository (2)

RELEASE=$ (l s b r e l e a s e - cs)
echo ”deb http :// apt . p o s t g r e s q l . org /pub/ repos /apt / ${RELEASE}” - pgdg main | \
sudo tee / e t c / apt / sour c e s . l i s t . d/pgdg . l i s t

Verify repository file contents:

Listing 11: Add PostgreSQL 11 APT repository (3)

cat / e t c / apt / sour c e s . l i s t . d/pgdg . l i s t
deb http :// apt . p o s t g r e s q l . org /pub/ repos / apt / b i o n i c - pgdg main

The last installation step is for PostgreSQL 11 packages. Run the following commands to install PostgreSQL
11 on Ubuntu 20.04/18.04/16.04:

Listing 12: Install PostgreSQL 11

sudo apt update
sudo apt - y i n s t a l l p o s t g r e s q l - 11

Listing 13: Set PostgreSQL admin user’s password and do testing

sudo su - po s tg r e s
psq l - c ” a l t e r user po s tg r e s with password ’ StrongPassword ’ ”

More details on the installation of PostgreSQL 11 can also be found here. To install PostGIS== 2.5 type in
the terminal the following commad:

Listing 14: Install PostGIS== 2 .5

sudo apt - get i n s t a l l p o s t g r e s q l - 11 - p o s t g i s - 2 . 5

Before installing MobilityDB to our system, further dependencies need to be installed. To install the depen-
dencies type:

Listing 15: MobilityDB dependencies

sudo apt - get i n s t a l l l i b g s l - dev
sudo apt i n s t a l l bu i ld - e s s e n t i a l cmake p o s t g r e s q l - s e r v e r - dev - 11 l iblwgeom - dev \
l i b p r o j - dev l i b j s o n - c - dev

To built MobilityDB type:

Listing 16: Building and Installation

g i t c l one https : // github . com/MobilityDB/MobilityDB
mkdir MobilityDB/ bu i ld
cd MobilityDB/ bu i ld
cmake . .
make
sudo make i n s t a l l
p sq l - c ’CREATE EXTENSION MobilityDB CASCADE’

We should also set the following in postgresql.conf:

5

https://computingforgeeks.com/install-postgresql-11-on-ubuntu-linux/

Listing 17: Configuration

s h a r e d p r e l o a d l i b r a r i e s = ’ p o s t g i s - 2 . 5 ’
m a x l o c k s p e r t r a n s a c t i o n = 128

The configuration of PostgreSQL is typically located at ’/etc/postgresql/9.1/main/postgresql.conf’. Installation
instructions for MobilityDB can also be found here.

2.3 Optional requirements

Although the requirements in this Section are optional they will make the training session a bit more fun and easier.

• pgAdmin:You can run queries to the database by installing pgAdmin, an application that will serve as a web
interface and will make things easier. To install pgAdmin, type:

Listing 18: Install pgAdmin4

sudo apt i n s t a l l pgadmin4

• QGIS Desktop: Finally, in order to visualize on the map the results obtained when we run the queries it is
recommended to install the latest version of QGIS Desktop with the OpenStreetMap layers for QGIS.

6

https://github.com/MobilityDB/MobilityDB
https://www.pgadmin.org/
https://qgis.org/en/site/forusers/download.html
https://www.giscourse.com/how-to-add-openstreetmap-basemaps-in-qgis-3-0/

Attribute Description

Timestamp the time at which the message was received (EET)
Ship ID unique identifier for each ship

Longitude the longitude of the current ship position
Latitude the latitude of the current ship position
Heading heading of the ship’s bow in degrees (0 corresponds to north)

Course Over Ground (COG) heading the vessel travels to in degrees (0 corresponds to north)
Speed Over Ground (SOG) Speed in knots

Ship Name the name of the ship
Ship Type AIS reported ship-type
Draught the draft of the ship (0.1 to 25.5 metres)
Size Bow Distance from bow to the AIS transponder on board the ship
Size Stern Distance from stern to the AIS transponder on board the ship
Size Port Distance from port side to the AIS transponder on board the ship

Size Starboard Distance from starboard side to the AIS transponder on board the ship
Destination AIS reported destination

Table 1: Dataset attributes

3 AIS Protocol and Dataset

AIS stands for Automatic Identification System and is a global tracking system that allows vessels to be aware
of vessel traffic in their vicinity and to be seen by that traffic. Through this tracking system vessels broadcast
information about their location (i.e., GPS coordinates) and behaviour (e.g., speed, course, etc.), as well as infor-
mation about their characteristics such as vessel size, draught and destination. All vessels over 300 gross tonnage
are obliged by the International Maritime Organization (IMO) to carry an Automatic Identification System (AIS)
transponder on board.

Dataset: During the training session, we will be using a dataset that contains AIS messages collected from a
Terrestrial AIS receiver (T-AIS) installed on top of the building of the Department of Informatics and Telematics
of Harokopio University that was provided by MarineTraffic. The dataset covers the Saronic Gulf (Greece) during
a two-week period starting at March 10th, 2020 and ending at March 19th, 2020. The dataset provides information
for 773 unique vessels and contains 3,543,482 AIS records in total each comprising 15 attributes as described in
Table 1.

The dataset can be found here. To download the dataset through the command line type:

Listing 19: Download dataset

sudo apt i n s t a l l python - pip
pip i n s t a l l gdown
gdown https : // dr i v e . goog l e . com/uc? id=1F0yKCOfo7iIgWbkuReytCxrnD3vz1GAS

7

https://www.imo.org/
https://www.dit.hua.gr/index.php/en/
https://www.dit.hua.gr/index.php/en/
https://www.marinetraffic.com/en/ais/home/centerx:-12.0/centery:24.9/zoom:4
https://drive.google.com/file/d/1F0yKCOfo7iIgWbkuReytCxrnD3vz1GAS/view?usp=sharing

4 Managing Ship Trajectories

4.1 Preparing the Database

Create a new database called hua ais:

Listing 20: Create Database

CREATE DATABASE hua a i s

If you are using the command line connect to the database by typing:

Listing 21: Connect to the Database

\c hua a i s

If you are using pgAdmin, simply open the query tool inside the newly created database. Then use your SQL
editor to create the MobilityDB extension as follows:

Listing 22: MobilityDB extension

CREATE EXTENSION MobilityDB CASCADE;

The CASCADE command will additionally create the PostGIS extension. Now create a table in which the CSV
file will be loaded:

Listing 23: Create AIS table

CREATE TABLE AISInput (
T timestamp ,
ID varchar (100) ,
Longitude f loat ,
Lat i tude f loat ,
Heading integer ,
COG f loat ,
SOG f loat ,
ShipName varchar (100) ,
ShipType varchar (100) ,
Draught f loat ,
SizeBow f loat ,
S i z eS t e rn f loat ,
S i zePort f loat ,
S i zeStarboard f loat ,
Des t ina t i on varchar (100) ,
Geom geometry (Point , 4326)
) ;

4.2 Loading the data

To import a CSV file data into a PostgreSQL database we can use the COPY command as follows:

Listing 24: Load data into table

COPY AISInput (T, ID , Longitude , Latitude , Heading , COG, SOG, ShipName , ShipType ,\
Draught , SizeBow , S izeStern , S izePort , S izeStarboard , Des t ina t i on)
FROM ’ /home/ t e s t / workshop hua ais . csv ’ DELIMITER ’ , ’ CSV HEADER;

Next, we create the spatial points for each AIS message:

Listing 25: Create spatial points

UPDATE AISInput SET
Geom = ST SetSRID (ST MakePoint (Longitude , Lat i tude) , 4326) ;

8

(a) Bounding box of the filtered dataset. (b) The remaining AIS positions after the filtering.

Figure 1: Area under surveillance.

Now, we do some basic cleaning of the dataset. First, we filter out points that are outside of the bounding box
as shown in Figure 1a:

Listing 26: Filter data

CREATE TABLE AISInputFi l t e red AS
SELECT DISTINCT ON(ID ,T) ∗
FROM AISInput
WHERE Longitude BETWEEN 23.378894 and 23.815601 AND
Lat i tude BETWEEN 37.664548 AND 38 .057034 ;

A tool with which you can extract a bounding box can be found here.
To export the data of the “AISInputFiltered” table to a csv file type in the SQL editor the following:

Listing 27: Export to CSV

COPY
AISInputFi l t e red (t , ID , Longitude , Latitude , Heading ,COG,SOG, ShipName , ShipType , Draught ,
SizeBow , S izeStern , S izePort , S izeStarboard , Des t ina t i on)
TO ’ /home/ t e s t / f i l t e r e d a i s . csv ’ WITH (FORMAT CSV, HEADER) ;

A visual illustration of the filtered dataset can be seen in Figure 1b

9

https://boundingbox.klokantech.com/

4.3 Constructing trajectories

In this step, we construct trips or trajectories from AIS messages, a spatiotemporal data type that describes the
movement of the vessel in space and in time. MobilityDB builds on the coordinate transformation feature of
PostGIS.

Listing 28: Construction of trajectories

CREATE TABLE Trips (ID , Trip) AS
SELECT ID ,
tgeompointseq (array agg (tgeompoint ins t (ST Transform (Geom, 4326) , T) ORDERBY T))
FROM AISInputFi l t e red
GROUPBY ID ;

In order to visualize the trips, we extract the spatial aspect of the trip and update the table:

Listing 29: Create table of trips

ALTER TABLE Trips ADDCOLUMN Traj geometry ;
UPDATE Trips SET Traj= t r a j e c t o r y (Trip) ;

We then store the trips to csv:

Listing 30: Extract trips to csv

COPY (SELECT ST AsText (t r a j) FROM t r i p s)
TO ’ /home/ t e s t /ws/ t r i p s . csv ’ WITH (FORMAT CSV, HEADER) ;

The visualization of the trajectories can be seen in Figure 2.

Figure 2: The linestrings of the trajectories.

10

(a) The ports of Perama and Paloukia in the right and left side
of the Figure respectively.

(b) The trips between Athens and the island of Salamina.

Figure 3: Vessels that travel between two ports.

4.4 Analyzing trajectories

In this section, we dive a bit more in the features and functions of the MobilityDB. In the dataset, there are several
vessels that travel between Athens (Perama port) and the island of Salamina (Paloukia port). The two ports can
be seen in Figure 3a. The goal is to simply identify which ships do so, and to count how many two-way trips they
did in the dataset. This can be expressed by the following query:

Listing 31: Extract trips between the two ports

CREATE INDEX Tr ips Tr ip Idx ON Trips USING GiST(Trip) ;

WITH Ports (Paloukia , Perama) AS (
SELECT ST MakeEnvelope (23 .528269227 , 37 .9644819698 ,

23 .5306885795 , 37 .9665246767 , 4326) ,
ST MakeEnvelope (23 .5546458997 , 37 .9634903768 ,

23 .557177905 , 37 .964298173 , 4326)
)
SELECT T.∗ , Paloukia , Perama
FROM Ports P, Trips T
WHERE i n t e r s e c t s (T. Trip , P. Paloukia) AND i n t e r s e c t s (T. Trip , P . Perama) ;

This query creates two envelope geometries that represent the locations of the two ports, then intersects them
with the spatiotemporal trajectories of the ships. The “intersects” function checks whether a temporal point has
ever intersected a geometry. To speed up the query, a spatiotemporal GiST index is first built on the Trip attribute.
The trips between Perama and Paloukia are illustrated in Figure 3b. To count how many two-way trips each vessel
did, we extend the previous query as follows:

Listing 32: Count how many two-way trips each vessel did

WITH Ports (Paloukia , Perama) AS (
SELECT ST MakeEnvelope (23 .528269227 , 37 .9644819698 ,

23 .5306885795 , 37 .9665246767 , 4326) ,
ST MakeEnvelope (23 .5546458997 , 37 .9634903768 ,

23 .557177905 , 37 .964298173 , 4326)
)
SELECT ID , (numSequences (atGeometry (T. Trip , P. Paloukia)) +
numSequences (atGeometry (T. Trip , P. Perama))) AS NumTrips
FROM Ports P, Trips T
WHERE i n t e r s e c t s (T. Trip , P. Paloukia) AND i n t e r s e c t s (T. Trip , P . Perama)

11

The function “atGeometry” restricts the temporal point to the parts where they are inside the given geometry.
The result is thus a temporal point that consists of multiple pieces (sequences), with temporal gaps in between.
The function “numSequences” counts the number of these pieces. The results of the query can be seen in Figure 4.

Figure 4: The number of two-way trips per vessel between Athens and the island of Salamina.

As already mentioned, the dataset covers a period starting at March 10th, 2020 and ending at March 19th, 2020.
The period was selected to contain vessel trajectories before and after the corona virus lockdown which started at
March 16th. Therefore, we present queries that are a bit more interesting. The following two queries count the
total number of active trips between two different periods. The first period is p1 ∈ [2020/03/12 , 2020/03/15] and
the second period is p2 ∈ [2020/03/16 , 2020/03/19], before and after the lockdown respectively. After running
the queries we can observe that the number of total trips were reduced from 1, 677 to 1, 574 which shows that only
a few days after the lockdown the maritime domain has been affected.

Listing 33: Count the total number of trips that were active 4 days before the corona virus lockdown

WITH TimeSpl it (Per iod) AS (
SELECT per iod (D, D + interval ’ 1 day ’)
FROM g e n e r a t e s e r i e s (timestamptz ’ 2020 - 03 - 12 00 : 00 : 00 ’ ,

t imestamptz ’ 2020 - 03 - 15 23 : 00 : 00 ’ , interval ’ 1 day ’) AS D)
SELECT COUNT(∗)
FROM TimeSpl it S , Trips T
WHERE S . Period && T. Trip AND atPer iod (Trip , Period) IS NOT NULL;

Listing 34: Count the total number of trips that were active 4 days after the corona virus lockdown

WITH TimeSpl it (Per iod) AS (
SELECT per iod (D, D + interval ’ 1 day ’)
FROM g e n e r a t e s e r i e s (timestamptz ’ 2020 - 03 - 16 00 : 00 : 00 ’ ,

t imestamptz ’ 2020 - 03 - 19 23 : 00 : 00 ’ , interval ’ 1 day ’) AS D)
SELECT COUNT(∗)
FROM TimeSpl it S , Trips T
WHERE S . Period && T. Trip AND atPer iod (Trip , Period) IS NOT NULL;

12

The queries split the period into smaller one-day periods and for each sub-period the number of trips is counted.
Finally, the number of trips per day are aggregated to show the total number of active trips during the period. To
count the number of total trips during a period, we can use a simpler query, but the query was made more complex
to show more functionalities of the MobilityDB.

References

[1] Mohamed S. Bakli, Mahmoud Attia Sakr, and Esteban Zimányi. Distributed moving object data management in
mobilitydb. In Varun Chandola, Ranga Raju Vatsavai, and Ashwin Shashidharan, editors, Proceedings of the 8th
ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL
2019, Chicago, IL, USA, November 5th, 2019, pages 1:1–1:10. ACM, 2019.

[2] Mohamed S. Bakli, Mahmoud Attia Sakr, and Esteban Zimányi. Distributed mobility data management in
mobilitydb. In 21st IEEE International Conference on Mobile Data Management, MDM 2020, Versailles,
France, June 30 - July 3, 2020, pages 238–239. IEEE, 2020.

[3] Mohamed S. Bakli, Mahmoud Attia Sakr, and Esteban Zimányi. Distributed spatiotemporal trajectory query
processing in SQL. In Chang-Tien Lu, Fusheng Wang, Goce Trajcevski, Yan Huang, Shawn D. Newsam, and
Li Xiong, editors, SIGSPATIAL ’20: 28th International Conference on Advances in Geographic Information
Systems, Seattle, WA, USA, November 3-6, 2020, pages 87–98. ACM, 2020.

[4] Esteban Zimányi, Mahmoud Attia Sakr, Arthur Lesuisse, and Mohamed S. Bakli. Mobilitydb: A mainstream
moving object database system. In Walid G. Aref, Michela Bertolotto, Panagiotis Bouros, Christian S. Jensen,
Ahmed Mahmood, Kjetil Nørv̊ag, Dimitris Sacharidis, and Mohamed Sarwat, editors, Proceedings of the 16th
International Symposium on Spatial and Temporal Databases, SSTD 2019, Vienna, Austria, August 19-21,
2019, pages 206–209. ACM, 2019.

13

	Introduction
	Requirements for the training session
	Run with docker
	Run natively
	Optional requirements

	AIS Protocol and Dataset
	Managing Ship Trajectories
	Preparing the Database
	Loading the data
	Constructing trajectories
	Analyzing trajectories

